

    
      
          
            
  


isochrones

Isochrones is a python package that provides a simple interface to grids
of stellar evolution models, enabling the following common use cases:



	Interpolating stellar model values at desired locations.


	Generating properties of synthetic stellar populations.


	Determining stellar properties of either single- or multiple-star systems,
based on arbitrary observables.







The central goal of isochrones is to standardize model-grid-based stellar
parameter inference, and to enable such inference under different sets of
stellar models.  For now, only MIST models are included, but we hope to incorporate
YAPSI and PARSEC models as well.



	Install
	Conda environment and testing

	Installing MultiNest





	Quick Start
	Access stellar model grid data

	Interpolate stellar properites

	Generate synthetic properties of stars

	Fit physical parameters of a star to observed data

	Fit a binary star model





	Interpolation: the DFInterpolator

	Stellar model grids
	Background and EEPs

	Model Grid Objects and Interpolation

	Example visualization





	Bolometric correction grids

	ModelGridInterpolator
	Isochrones

	Evolution tracks

	Generating synthetic properties

	Demo: Visualize





	Fitting stellar parameters
	Defining a star model

	Priors

	Sampling the posterior





	Multiple star systems
	Unresolved multiple systems

	Resolved multiple system

	Unassociated companions

	More complex models





	Simulating stellar populations
	StarPopulation object

	ModelGridInterpolator.generate_binary













          

      

      

    

  

    
      
          
            
  


Install


Conda environment and testing

Isochrones requires python 3. I also recommend using isochrones in its own conda environment, to help manage dependencies. For example:

conda create -n isochrones numpy numba nose pytables pandas





Then

conda activate isochrones
pip install isochrones





To make sure everything is working, run

nosetests isochrones





And if anything breaks, please raise an issue [https://github.com/timothydmorton/isochrones/issues].




Installing MultiNest

It is highly recommended to install MultiNest/PyMultiNest for model fitting. First, install/build multinest with

git clone https://github.com/johannesBuchner/MultiNest
cd MultiNest/build
cmake -DCMAKE_INSTALL_PREFIX=~ ..  # or just "cmake .." if you have root permissions
make
make install





(Note that if you don’t have cmake available on your system, that you can install it in your environment with conda install -c conda-forge cmake.)

If you do not have root permissions and thus installed the MultiNest libraries to your home directory, you will also need to make sure that ~/lib is in your LD_LIBRARY_PATH environment variable; e.g., you can include the following line in your ~/.bash_profile file:

export LD_LIBRARY_PATH=$HOME/lib





Then you can install pymultinest with

pip install pymultinest





(And run nosetests isochrones again, for good measure, to confirm that MultiNest works.)







          

      

      

    

  

    
      
          
            
  


Quick Start


Access stellar model grid data


[1]:






from isochrones.mist import MISTIsochroneGrid

grid = MISTIsochroneGrid()
print(len(grid.df))
grid.df.head()  # Just the first few rows













1494453







[1]:
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Interpolation: the DFInterpolator

Linear interpolation between gridded datapoints lies at the heart of much of what isochrones does. The custom DFInterpolator object manages this interpolation, implemented to optimize speed and convenience for large grids. A DFInterpolator is built on top of a pandas multi-indexed dataframe, and while designed with stellar model grids in mind, it can be used with any similarly structured data.

Let’s demonstrate with a small example of data on a 2-dimensional grid.


[1]:






import itertools
import numpy as np
import pandas as pd

x = np.arange(1, 4)
y = np.arange(1, 6)

index = pd.MultiIndex.from_product((x, y), names=['x', 'y'])
df = pd.DataFrame(index=index)

df['sum'] = [x + y for x, y in itertools.product(x, y)]
df['product'] = [x * y for x, y in itertools.product(x, y)]
df['power'] = [x**y for x, y in itertools.product(x, y)]

df








[1]:
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Stellar model grids


Background and EEPs

Stellar model grids are typically constructed as a set of evolutionary tracks, where models of stellar evolution are run on grids of initial mass and metallicity, often with some other physical parameter varied as well (e.g., rotation, helium fraction, \(\alpha\)-abundance, etc.). Each of these evolutionary tracks predicts various physical properties (temperature, luminosity, etc.) of a star with given initial mass and metallicity, as a function of age.

It is also often of interest to re-organize these evolution track grids into “isochrones”—sets of stars at a range of masses, all with the same age. As described in this reference [https://iopscience.iop.org/article/10.3847/0067-0049/222/1/8/pdf], in order to construct these isochrones, the time axis of each evolution track gets mapped into a new coordinate, called “equivalent evolutionary phase,” or EEP. The principle of the EEPs is to first identify physically significant stages in
stellar evolution, and then subdivide each of these stages into a number of equal steps. This adaptive sampling enables accurate interpolation between evolution tracks even at ages when stars are evolving quickly, in the post-main sequence phases.

Previous versions of isochrones relied directly on these precomputed isochrone grids and interpolated between grid points in (mass, age, feh) space. This returned inaccurate results [https://github.com/timothydmorton/isochrones/issues/63] for post-MS stages of stellar evolution, and thus was not reliable for modeling evolved stars. However, beginning with v2.0, isochrones now implements all interpolation using EEPs. In addition, it provides direct access to the evolution track
grids, in addition to precomputed isochrone grids. Note that version 2.0 includes only the MIST [http://waps.cfa.harvard.edu/MIST/index.html] models; future updates will include more (e.g. PARSEC, YAPSI).




Model Grid Objects and Interpolation

Isochrones provides a simple and direct interface to full grids of stellar models. Upon first access, the grids are downloaded in original form, reorganized, and written to disk in binary format in order to load quickly with subsequent access. The grids are loaded as pandas dataframes with multi-level indexing that reflects the structure of the grids: evolution track grids are indexed by metallicity, initial mass, and EEP; and isochone grids by metallicity, age, and EEP.


[1]:






from isochrones.mist import MISTEvolutionTrackGrid, MISTIsochroneGrid

track_grid = MISTEvolutionTrackGrid()
track_grid.df.head()  # just show first few rows








[1]:
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Bolometric correction grids

Bolometric correction is defined as the difference between the apparent bolometric magnitude of a star and its apparent magnitude in a particular bandpass:


\[BC_x = m_{bol} - m_x\]

The MIST project provide grids of bolometric corrections [http://waps.cfa.harvard.edu/MIST/model_grids.html#bolometric] in many photometric systems as a function of stellar temperature, surface gravity, metallicity, and \(A_V\) extinction. This allows for accurate conversion of bolometric magnitude of a star (available from the theoretical grids) to magnitude in any band, at any extinction (and distance), without the need for any “effective wavelength” approximation (used in
isochrones prior to v2.0), which breaks down for broad bandpasses and large extinctions. These grids are downloaded, organized, stored, and interpolated in much the same manner as the model grids.


[1]:






from isochrones.mist.bc import MISTBolometricCorrectionGrid

bc_grid = MISTBolometricCorrectionGrid(['J', 'H', 'K', 'G', 'BP', 'RP', 'g', 'r', 'i'])








[2]:






bc_grid.df.head()








[2]:
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ModelGridInterpolator

In practice, interaction with the model grid and bolometric correction objects is easiest through a ModelGridInterpolator object, which brings the two together. This object is the replacement of the Isochrone object from previous generations of this package, though it has a slightly different API. It is mostly backward compatible, except for the removal of the .mag function dictionary for interpolating apparent magnitudes, this being replaced by the .interp_mag method.


Isochrones

An IsochroneInterpolator object takes [EEP, log(age), feh] as parameters.


[1]:






from isochrones.mist import MIST_Isochrone

mist = MIST_Isochrone()

pars = [353, 9.78, -1.24]  # eep, log(age), feh
mist.interp_value(pars, ['mass', 'radius', 'Teff'])








[1]:







array([7.93829519e-01, 7.91444054e-01, 6.30305932e+03])






To interpolate apparent magnitudes, add distance [pc] and \(A_V\) extinction as parameters.


[2]:






mist.interp_mag(pars + [200, 0.11], ['K', 'BP', 'RP'])  # Returns Teff, logg, feh, mags








[2]:







(6303.059322477636,
 4.540738764316164,
 -1.377262817643937,
 array([10.25117074, 11.73997159, 11.06529993]))









Evolution tracks

Note that you can do the same using an EvolutionTrackInterpolator rather than an isochrone grid, using [mass, EEP, feh] as parameters:


[3]:






from isochrones.mist import MIST_EvolutionTrack

mist_track = MIST_EvolutionTrack()

pars = [0.794, 353, -1.24]  # mass, eep, feh [matching above]
mist_track.interp_value(pars, ['mass', 'radius', 'Teff', 'age'])








[3]:







array([7.93843749e-01, 7.91818696e-01, 6.31006708e+03, 9.77929505e+00])







[4]:






mist_track.interp_mag(pars + [200, 0.11], ['K', 'BP', 'RP'])








[4]:







(6310.067080800683,
 4.54076772643659,
 -1.372925841944066,
 array([10.24893319, 11.73358578, 11.06056746]))






There are also convenience methods (for both isochrones and tracks) if you prefer (and for backward compatibility—note that the parameters must be unpacked, unlike the calls to .interp_value and .interp_mag), though it is slower to call multiple of these than to call .interp_value once with several desired outputs:


[5]:






mist_track.mass(*pars)








[5]:







array(0.79384375)






You can also get the dataframe of a single isochrone (interpolated to any age or metallicity) as follows:


[6]:






mist.isochrone(9.53, 0.1).head()  # just show first few rows








[6]:
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Fitting stellar parameters

The central purpose of isochrones is to infer the physical properties of stars given arbitrary observations. This is accomplished via the StarModel object. For simplest usage, a StarModel is initialized with a ModelGridInterpolator and observed properties, provided as (value, uncertainty) pairs. Also, while the vanilla StarModel object (which is mostly the same as the isochrones v1 StarModel object) can still be used to fit a single star, isochrones v2 has a
new SingleStarModel available, that has a more optimized likelihood implementation, for significantly faster inference.


Defining a star model

First, let’s generate some “observed” properties according to the model grids themselves. Remember that .generate() only works with the evolution track interpolator.


[1]:






from isochrones.mist import MIST_EvolutionTrack, MIST_Isochrone

track = MIST_EvolutionTrack()

mass, age, feh, distance, AV = 1.0, 9.74, -0.05, 100, 0.02

# Using return_dict here rather than return_df, because we just want scalar values
true_props = track.generate(mass, age, feh, distance=distance, AV=AV, return_dict=True)
true_props








[1]:







{'nu_max': 2617.5691700617886,
 'logg': 4.370219109480715,
 'eep': 380.0,
 'initial_mass': 1.0,
 'radius': 1.0813017873811603,
 'logTeff': 3.773295968705084,
 'mass': 0.9997797219140423,
 'density': 1.115827651504971,
 'Mbol': 4.4508474939623826,
 'phase': 0.0,
 'feh': -0.09685557997282962,
 'Teff': 5934.703385987951,
 'logL': 0.11566100241504726,
 'delta_nu': 126.60871562200438,
 'interpolated': 0.0,
 'star_age': 5522019067.711771,
 'age': 9.74119762492735,
 'dt_deep': 0.0036991465241712263,
 'J': 8.435233804866742,
 'H': 8.124109062114325,
 'K': 8.09085566863133,
 'G': 9.387465543790636,
 'BP': 9.680097761608252,
 'RP': 8.928888526297722,
 'W1': 8.079124865544092,
 'W2': 8.090757185192754,
 'W3': 8.06683507215844,
 'TESS': 8.923262483762786,
 'Kepler': 9.301490687837552}






Now, we can define a starmodel with these “observations”, this time using the isochrone grid interpolator. We use the optimized SingleStarModel object.


[2]:






from isochrones import SingleStarModel, get_ichrone

mist = get_ichrone('mist')

uncs = dict(Teff=80, logg=0.1, feh=0.1, phot=0.02)
props = {p: (true_props[p], uncs[p]) for p in ['Teff', 'logg', 'feh']}
props.update({b: (true_props[b], uncs['phot']) for b in 'JHK'})

# Let's also give an appropriate parallax, in mas
props.update({'parallax': (1000./distance, 0.1)})

mod = SingleStarModel(mist, name='demo', **props)







And we can see the prior, likelihood, and posterior at the true parameters:


[3]:






eep = mist.get_eep(mass, age, feh, accurate=True)
pars = [eep, age, feh, distance, AV]

mod.lnprior(pars), mod.lnlike(pars), mod.lnpost(pars)








[3]:







(-23.05503287088296, -20.716150242083508, -43.77118311296647)






If we stray from these parameters, we can see the likelihood decrease:


[4]:






pars2 = [eep + 3, age - 0.05, feh + 0.02, distance, AV]
mod.lnprior(pars2), mod.lnlike(pars2), mod.lnpost(pars2)








[4]:







(-23.251706955307853, -85.08590699022739, -108.33761394553524)






How long does a posterior evaluation take?


[5]:






%timeit mod.lnpost(pars)













1000 loops, best of 3: 369 µs per loop







[6]:






from isochrones import BinaryStarModel

mod2 = BinaryStarModel(mist, **props)








[7]:






pars2 = [eep, eep - 20, age, feh, distance, AV]
%timeit mod2.lnpost(pars2)













The slowest run took 373.39 times longer than the fastest. This could mean that an intermediate result is being cached.
1000 loops, best of 3: 429 µs per loop







[8]:






from isochrones import TripleStarModel
mod3 = TripleStarModel(mist, **props)
pars3 = [eep, eep-20, eep-40, age, feh, distance, AV]
%timeit mod3.lnpost(pars3)













1000 loops, best of 3: 541 µs per loop









Priors

As you may have noticed, we have not explictly defined any priors on our parameters. They were defined for you, but you may wish to know what they are, and/or to change them.


[9]:






mod._priors








[9]:







{'mass': <isochrones.priors.ChabrierPrior at 0x1c47e270f0>,
 'feh': <isochrones.priors.FehPrior at 0x1c47e27358>,
 'age': <isochrones.priors.AgePrior at 0x1c47e27748>,
 'distance': <isochrones.priors.DistancePrior at 0x1c47e27390>,
 'AV': <isochrones.priors.AVPrior at 0x1c47e27400>,
 'eep': <isochrones.priors.EEP_prior at 0x1c47e274e0>}






You can sample from these priors:


[10]:






samples = mod.sample_from_prior(1000)
samples








[10]:
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Multiple star systems

One of the signature capabilities of isochrones is the ability to fit multiple star systems to observational data. This works by providing a StarModel with more detailed information about the observational data, and about how many stars you wish to fit. There are several layers of potential intricacy here, which we will walk through in stages.


Unresolved multiple systems

Often it is of interest to know what potential binary star configurations are consistent with observations of a star. For most stars the best available observational data is a combination of broadband magnitudes from various all-sky catalogs and parallax measurements from Gaia. Let’s first generate synthetic observations of such a star, and then see what we can recover with a binary or triple star model, and also what inference of this system under a single star model would tell us.

Note here that for this simplest of multiple star scenarios—unresolved, physically associated, binary or triple-star systems—there are special StarModel objects available that have more highly optimized likelihood calculations, analogous to the SingleStarModel that is available for a simple single-star fit. BinaryStarModel and TripleStarModel are these special objects. In order to accommodate more complex scenarios, such as fitting resolved steller companions, it is necessary
to use the vanilla StarModel object.

First, we will initialize the isochrone interpolator. Note that we actually require the isochrone interpolator here, rather than the evolution track interpolator, because the model requires the primary and secondary components to have the same age, so that age must be a sampling paramter.


[1]:






from isochrones import get_ichrone

mist = get_ichrone('mist')







Now, define the “true” system parameters and initialize the StarModel accordingly, with two model stars. Remember that even though we need to use an isochrone interpolator to fit the model, we have to use the evolution tracks to generate synthetic data; this here shows that you can actually do this by using the .track complementary attribute. Note also the use of the utility function addmags to combine the magnitudes of the two stars.


[2]:






from isochrones import BinaryStarModel
from isochrones.utils import addmags

distance = 500  # pc
AV = 0.2
mass_A = 1.0
mass_B = 0.5
age = 9.6
feh = 0.0

# Synthetic 2MASS and Gaia magnitudes
bands = ['J', 'H', 'K', 'BP', 'RP', 'G']
props_A = mist.track.generate(mass_A, age, feh, distance=distance, AV=AV,
                              bands=bands, return_dict=True, accurate=True)
props_B = mist.track.generate(mass_B, age, feh, distance=distance, AV=AV,
                              bands=bands, return_dict=True, accurate=True)

unc = dict(J=0.02, H=0.02, K=0.02, BP=0.002, RP=0.002, G=0.001)
mags_tot = {b: (addmags(props_A[b], props_B[b]), unc[b]) for b in bands}

# Gaia parallax in mas for a system at 500 pc
parallax = (2, 0.05)

mod_binary = BinaryStarModel(mist, **mags_tot, parallax=parallax, name='demo_binary')







This model has the following parameters; eep_0 and eep_1 correspond to the primary and secondary components, respectively. All the other parameters are assumed to be the same between the two components; that is, they are assumed to be co-eval and co-located.


[3]:






mod_binary.param_names








[3]:







('eep_0', 'eep_1', 'age', 'feh', 'distance', 'AV')






Let’s also restrict the prior ranges for the parameters, to help with convergence.


[4]:






mod_binary.set_bounds(eep=(1, 600), age=(8, 10))







Let’s test out the posterior computation, and then run a fit to see if we can recover the true parameters.


[5]:






pars = [350., 300., 9.7, 0.0, 300., 0.1]
print(mod_binary.lnpost(pars))
%timeit mod_binary.lnpost(pars)













-645802.2025506602
1000 loops, best of 3: 719 µs per loop






For a binary fit, it is often desirable to run with more than the default number of live points; here we double from 1000 to 2000.


[6]:






mod_binary.fit(n_live_points=2000)  # takes about 14 minutes on my laptop








[7]:






%matplotlib inline

columns = ['mass_0', 'mass_1', 'age', 'feh', 'distance', 'AV']
truths = [mass_A, mass_B, age, feh, distance, AV]
mod_binary.corner_derived(columns, truths=truths);












[image: _images/multiple_12_0.png]





[8]:






mod_binary.corner_observed();












[image: _images/multiple_13_0.png]




Looks like this recovers the injected parameters pretty well, though not exactly. It looks like the flat-linear age prior (which weights the fit significantly to older ages) is biasing the masses somewhat low. Let’s explore what happens if we change the prior and try again, imagining we have some other indicaton the log(age) should be around 9.6.


[9]:






from isochrones.priors import GaussianPrior

mod_binary_2 = BinaryStarModel(mist, **mags_tot, parallax=parallax, name='demo_binary_2')
mod_binary_2.set_bounds(eep=(1, 600))
mod_binary_2.set_prior(age=GaussianPrior(9.6, 1, bounds=(8,10)))
mod_binary_2.lnpost(pars)









[9]:







-645802.7700077017







[10]:






mod_binary_2.fit(n_live_points=2000)








[11]:






mod_binary_2.corner_derived(columns, truths=truths);












[image: _images/multiple_17_0.png]




Hmm, doesn’t seem to be much different. Looks like this needs more exploration!




Resolved multiple system

Another useful capability of isochrones is the ability to fit binary (or higher-order multiple) systems that are resolved in high-resolution imaging but blended in catalog photometry. This is done by using the StarModel object directly (instead of the optimized models) and explicitly passing the observations.

As before, let’s begin by using simulating data. Let’s pretend that the same binary system from above is resolved in AO \(K\)-band imaging, but blended in 2MASS catalog data. Let’s say this time that we also have spectroscopic constraints of the primary properties.

Inspecting this tree to make sure it accurately represents the desired model becomes more important if the model is more complicated, but this simple case is a good example to review. Each node named with a bandpass represents an observation, with some magnitude and uncertainty (at some separatrion and position angle—irrelevant for the unresolved case). The model nodes here are named 0_0 and 0_1, with the first index representing the system, and the second index the star number within
that system. All stars in the same system share the same age, metallicity, distance, and extinction. In the computation of the likelihood, the apparent magnitude in each observed node is compared with a model-based magnitude that is computed from the sum of the fluxes of all model nodes underneath that observed node in the tree. In the unresolved case, this is trivial, but this structure becomes important when a binary is resolved. This model, because the two model stars share all attributes
except mass, has the following parameters:


[12]:






from isochrones import StarModel
from isochrones.observation import ObservationTree, Observation, Source

def build_obstree(name):
    obs = ObservationTree(name=name)
    for band in 'JHK':
        o = Observation('2MASS', band, 4)  # Name, band, resolution (in arcsec)
        s = Source(addmags(props_A[band], props_B[band]), 0.02)
        o.add_source(s)
        obs.add_observation(o)

    o = Observation('AO', 'K', 0.1)
    s_A = Source(0., 0.02, separation=0, pa=0,
                 relative=True, is_reference=True)
    s_B = Source(props_B['K'] - props_A['K'], 0.02, separation=0.2, pa=100,
                 relative=True, is_reference=False)
    o.add_source(s_A)
    o.add_source(s_B)

    obs.add_observation(o)
    return obs

obs = build_obstree('demo_resolved')
mod_resolved = StarModel(mist, obs=obs,
                         parallax=parallax, Teff=(props_A['Teff'], 100),
                         logg=(props_A['logg'], 0.15), feh=(props_A['feh'], 0.1))
mod_resolved.print_ascii()













demo_resolved
 ╚═ 2MASS J=(12.11, 0.02) @(0.00, 0 [4.00])
    ╚═ 2MASS H=(11.74, 0.02) @(0.00, 0 [4.00])
       ╚═ 2MASS K=(11.68, 0.02) @(0.00, 0 [4.00])
          ╠═ AO delta-K=(0.00, 0.02) @(0.00, 0 [0.10])
          ║  ╚═ 0_0, Teff=(5834.782979719397, 100), logg=(4.435999146983706, 0.15), feh=(-0.012519050601435218, 0.1), parallax=(2, 0.05)
          ╚═ AO delta-K=(2.43, 0.02) @(0.20, 100 [0.10])
             ╚═ 0_1, parallax=(2, 0.05)







[13]:






pars = [300, 280, 9.6, 0.0, 400, 0.1]
mod_resolved.lnpost(pars)








[13]:







-8443.175970078633







[14]:






%timeit mod_resolved.lnpost(pars)













100 loops, best of 3: 1.23 ms per loop







[15]:






mod_resolved.fit()








[16]:






%matplotlib inline

columns = ['mass_0_0', 'mass_0_1', 'age_0', 'feh_0', 'distance_0', 'AV_0']
truths = [mass_A, mass_B, age, feh, distance, AV]
mod_resolved.corner(columns, truths=truths);












[image: _images/multiple_25_0.png]




Nailed it! Looks like the spectroscopy was very helpful in getting the fit correct (age in particular).




Unassociated companions

The previous two examples model a binary star system in which the two components are co-located and co-eval; that is, they have the same age, metallicity, distance, and extinction.

One can imagine, however, wanting to model a scenario in which the two components are not physically associated, but rather just chance-aligned in the plane of the sky. In this case, you can set up the StarModel with just a small difference:


[17]:






obs = build_obstree('demo_resolved_unassoc')  # N.B., running this again, because the old "obs" was changed by the previous model
mod_resolved_unassoc = StarModel(mist, obs=obs,
                         parallax=parallax, Teff=(props_A['Teff'], 100),
                         logg=(props_A['logg'], 0.15), feh=(props_A['feh'], 0.1),
                         index=[0, 1])
mod_resolved_unassoc.print_ascii()













demo_resolved_unassoc
 ╚═ 2MASS J=(12.11, 0.02) @(0.00, 0 [4.00])
    ╚═ 2MASS H=(11.74, 0.02) @(0.00, 0 [4.00])
       ╚═ 2MASS K=(11.68, 0.02) @(0.00, 0 [4.00])
          ╠═ AO delta-K=(0.00, 0.02) @(0.00, 0 [0.10])
          ║  ╚═ 0_0, Teff=(5834.782979719397, 100), logg=(4.435999146983706, 0.15), feh=(-0.012519050601435218, 0.1), parallax=(2, 0.05)
          ╚═ AO delta-K=(2.43, 0.02) @(0.20, 100 [0.10])
             ╚═ 1_0






Note that this model now has ten parameters, since the two systems are now decoupled, so we will not run the fit for this example, but it is in principle possible. (Note that you would probably want to run this with MPI for this number of parameters.)


[18]:






mod_resolved_unassoc.param_names








[18]:







['eep_0_0',
 'age_0',
 'feh_0',
 'distance_0',
 'AV_0',
 'eep_1_0',
 'age_1',
 'feh_1',
 'distance_1',
 'AV_1']









More complex models

You can define arbitrarily complex models, by explicitly defining the model nodes by hand, using the N and index keywords. Below are some examples.

This is a physically associated hierarchical triple, where the bright star from AO is an unresolved binary:


[19]:






obs = build_obstree('triple1')
StarModel(mist, obs=obs, N=[2, 1], index=[0, 0]).print_ascii()













triple1
 ╚═ 2MASS J=(12.11, 0.02) @(0.00, 0 [4.00])
    ╚═ 2MASS H=(11.74, 0.02) @(0.00, 0 [4.00])
       ╚═ 2MASS K=(11.68, 0.02) @(0.00, 0 [4.00])
          ╠═ AO delta-K=(0.00, 0.02) @(0.00, 0 [0.10])
          ║  ╠═ 0_0
          ║  ╚═ 0_1
          ╚═ AO delta-K=(2.43, 0.02) @(0.20, 100 [0.10])
             ╚═ 0_2






Here is a situation where the faint visual binary is an unrelated binary star:


[20]:






obs = build_obstree('triple2')
StarModel(mist, obs=obs, N=[1, 2], index=[0, 1]).print_ascii()













triple2
 ╚═ 2MASS J=(12.11, 0.02) @(0.00, 0 [4.00])
    ╚═ 2MASS H=(11.74, 0.02) @(0.00, 0 [4.00])
       ╚═ 2MASS K=(11.68, 0.02) @(0.00, 0 [4.00])
          ╠═ AO delta-K=(0.00, 0.02) @(0.00, 0 [0.10])
          ║  ╚═ 0_0
          ╚═ AO delta-K=(2.43, 0.02) @(0.20, 100 [0.10])
             ╠═ 1_0
             ╚═ 1_1






Here, both AO stars are unresolved binaries:


[21]:






obs = build_obstree('double_binary')
StarModel(mist, obs=obs, N=2, index=[0, 1]).print_ascii()













double_binary
 ╚═ 2MASS J=(12.11, 0.02) @(0.00, 0 [4.00])
    ╚═ 2MASS H=(11.74, 0.02) @(0.00, 0 [4.00])
       ╚═ 2MASS K=(11.68, 0.02) @(0.00, 0 [4.00])
          ╠═ AO delta-K=(0.00, 0.02) @(0.00, 0 [0.10])
          ║  ╠═ 0_0
          ║  ╚═ 0_1
          ╚═ AO delta-K=(2.43, 0.02) @(0.20, 100 [0.10])
             ╠═ 1_0
             ╚═ 1_1






You can in principle create even more crazy models, but I don’t recommend it…
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Simulating stellar populations

Many astronomical investigations require simulating populations of stars, and isochrones contains some utilities to help enable this. Given population distributions of the quantities required to simulate individual stars, a StarPopulation object can be defined and used to generate sample populations following this distribution. Binary stars, ubiquitous as they are [https://arxiv.org/abs/1903.05094], are necessarily built into this framework, so the parameters needed to simulate an
individual stellar observation are the following:


\[M_A, M_B, T, [Fe/H], d, A_V\]

where \(M_A, M_B\) are the primary and (if present) secondary masses, \(T\) is age, \([Fe/H]\) is the metalicity, \(d\) is distance, and \(A_V\) is the \(V\)-band extinction, quantifying the effect of dust along the line of sight. Generating a population of such stars then requires sampling from distributions of each of the above quantities. A StarPopulation takes metallicity, distance, and extinction distributions as arguments, and samples from each of those
distributions when generating a sample population.

Sampling primary/secondary masses and ages is a bit less straightforward. For \(M_A, M_B\), isochrones parametrizes the distribution with a primary initial mass function (IMF), binary fraction \(f_B\), and mass-ratio (\(q = M_B/M_A\)) distribution \(p(q) \propto q^\gamma\). The age distribution of stars in a population is often described as a “star-formation history” (SFH)—sampling a population with a given SFH is the same as treating the SFH as the probability distribution
function of stellar age, sampling ages from this distribution, and then truncating any stars that have reached the end of their evolution. Practically, this truncation happens by rejection sampling: evaluating the ModelGridInterpolator at each sampled set of parameters, and rejecting samples for which the interpolator returns np.nan values for the observed stellar properties (which will happen when trying to interpolate out-of-bounds, which happens when a star is requested beyond the end
of its lifetime).


StarPopulation object

Here is an example of StarPopulation usage:


[1]:






from scipy.stats import uniform, norm
from isochrones import get_ichrone
from isochrones.priors import GaussianPrior, SalpeterPrior, DistancePrior, FlatPrior
from isochrones.populations import StarFormationHistory, StarPopulation

# Initialize interpolator
mist = get_ichrone('mist')

# Initialize distributions

# Ingredients required to generate primary & secondary masses
imf = SalpeterPrior(bounds=(1, 10))  # minimum 1 Msun
fB = 0.4
gamma = 0.3

# SFH distribution takes a scipy stats distribution, of age in Gyr
sfh = StarFormationHistory(dist=uniform(0, 10))

# The following are all isochrones.priors.Prior objects,
# or anything with a .sample(N) method
feh = GaussianPrior(-0.2, 0.2)
distance = DistancePrior(max_distance=3000)
AV = FlatPrior(bounds=[0, 1])

pop = StarPopulation(mist, imf=imf, fB=fB, gamma=gamma, sfh=sfh, feh=feh, distance=distance, AV=AV)







Once the object is created, it can be used to generate a population of stars.


[2]:






df = pop.generate(1000)
df.head()








[2]:
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